「2030年CO2排出46%削減」は曇・雨の日に停電になる数字だ

yangphoto/iStock
政府が2021年7月に発表した「2030年CO2排出46%削減」という目標では、年間の発電電力量(kWh)の総量を現在の1兆650億kWhから9400億kWhに低減(=省エネ)した上で、発電電力量の配分を、再エネ38%、原子力22%、LNG火力20%、石炭火力19%にするという目標になっている。ここに使われている電力量(kWh)という数字は、いつどこで発電した電力であるかに係わらず、発電kWに発電時間hを掛けて得られる数字を足し算したものである。
一方、毎日の瞬間瞬間の電力は、発電量が需要を上回っていなければ、電力不足となり、停電に至る。従って、2030年目標が現実的か否かを判断するためには、電力配分目標を達成しようとした場合の各電源の発電規模(kW)がその時の需要を上回っているか否かをチェックする必要がある。つまり、瞬間最大電力需要(ピーク需要電力)を調べ、その時に稼働している電源の発電総量と比較して、過不足をチェックすることになる。
以下、順を踏んで、検討していく。
まず、日本のピーク需要電力を算定すると、以下のようになる。
現在のピーク需要電力は1億6000万kWであるが、2030年までの省エネでピーク需要電力も発電電力量と同程度の比率で低減できると考えると、2030年のピーク需要電力は、
1億6000万kW ×(2030年電力目標9400億kWh/現在値1兆650億kWh)= 1億4000万kW
となる。
このピーク需要電力を2030年目標の電源配分で供給することになる。
次は電源側の数字である。
再エネの発電規模については、2030年目標として数値が提起されており、太陽光1億kW、風力2000万kW、水力5060万kWとなっている。
この目標において、太陽光発電は、晴れた時しか発電しないので再エネ電力量38%を達成するためには1億kWをフルに発電させる必要がある注1)。
なお、年間発電量の計算においては、晴れの日が1年間の半分(180日)、その日の7時間(年間平均)フルパワーで発電できるとして取り扱う。
原子力の規模は、22%の供給を確保するために以下のような数値となる。
2030年の発電電力量9400億kWhの22%を、(1年=)8760時間で発電するための原子力発電の規模は、
9400 × 10⁴万kWh × 0.22/8760h = 2360万kW
となる。(原子力の設備利用率を75%とすると、発電設備の規模は、2360/0.75 =3200万kW、原発32基相当になる。)
火力の発電規模は、39%まで低減するために、以下のような数値に減らしていくことになる。
2030年の発電電力量9400億kWhの39%にまで火力発電を減らす場合、(1年=)8760時間の内、太陽光が発電している180日 × 7時間=1260時間を除き、7500時間で発電することになるため、必要な火力発電の規模は、
9400 × 10⁴万kWh × 0.39/7500h = 4900万kW
となる。(火力の設備利用率を90%とすると、発電設備の規模は、4900万/0.9 = 5400万kW)
以上の電源別発電規模をベースに、ピーク需要電力が供給可能か否かを考察する。
晴天の日は、太陽光が1億kW発電するので、原子力2360万kWと、水力の一部1640万kWで合計1億4000万kWとなり、供給力は確保される。
曇・雨の日の場合、太陽光発電がほぼゼロになる。この日の発電能力は、原子力の2360万kWと水力の5060万kW全部を加えても7420万kWなので、火力で補うことになる。火力発電の規模は、火力の削減目標39%を達成するために、4900万kWまで引き下げられているので、全体発電能力は、2360万 + 5060万 + 4900万 = 1億2320万kWとなる。ピーク需要電力1億4000万kW - 発電能力1億2320万kW =1680万kWの電力が不足となる。
つまり、曇・雨の日で、産業経済が予定通りに動いて電力需要がある日に、停電が起こるということである。(風力発電は風がどのように吹くかわからないので計算に入れることができない注2))
夜間はどうかというと、電力需要がピーク需要電力の半分くらいに低下する(=7000万kW)ので、太陽光が無くても、火力4900万kW+原子力2360万kW =7260万kWという形で電力需要は満たせる。
以上を纏めると、2030年にCO2排出を46%減らすという目標は、電力の観点からは、
- 晴天の日は電力が余るほど十分に足りる
- 曇・雨の日はピーク時間帯に電力が不足して停電に至る
- 夜間は安定電源のみで電力が足りる
ということになる。
政府は、何故、こういう簡単な計算を明示せずに、カッコ良さのみの目標で国民を惑わそうとするのか?火力を39%に減らして、原子力を22%に抑え、太陽光ばかりを増やしたら、曇・雨の日に停電に陥るのはほぼ自明の理ではないか。
曇・雨の日の停電を安定的に回避できるエネルギー政策を再検討して提示し直すべきである。
■
(注1)太陽光発電の割合が2桁%になると、不安定電力を安定化するための制御が必要になり、太陽光の電力を送電線に受入れるのを制限する必要が生じるが、2030年目標の数字では、1億kWの太陽光発電が送電系統に受け入れられる前提になっている(不合理であるが)ので、その取扱い方を流用する。
(注2)風力発電は、風の変化が予測不能なので電力設備規模の計算に入れられないが、もし仮に、風力の平均的な年間設備利用率なみの発電が常時できるとしたら、どのくらい事態は改善されるか?
2030年目標の陸上風力の設備規模1590万kW、設備利用率20%、洋上風力の設備規模370万kW、設備利用率30%をベースに計算すると、以下のようになる。
1590万kW × 0.2 + 370万kW × 0.3 = 430万kW
つまり、曇・雨の日の電力不足量1680万kWの4分の1程度を補うだけで、停電を回避できることにはならない。

関連記事
-
2022年11月7日、東京都は「現在の沿岸防潮堤を最大で1.4 m嵩上げする」という計画案を公表した。地球温暖化に伴う海面上昇による浸水防護が主な目的であるとされ、メディアでは「全国初の地球温暖化を想定した防潮堤かさ上げ
-
世界的なエネルギー価格の暴騰が続いている。特に欧州は大変な状況で、イギリス政府は25兆円、ドイツ政府は28兆円の光熱費高騰対策を打ち出した。 日本でも光熱費高騰対策を強化すると岸田首相の発言があった。 ところで日本の電気
-
再稼働に反対する最も大きな理由 各種世論調査では再稼働に反対する人の割合が多い。反対理由の最大公約数は、 万一事故が起きた時の影響が大きい→事故対策が不明、 どれだけ安全になったのかが判らない→安全性が不明、 原発が再稼
-
過去10年のエネルギー政策においては、京都議定書のエネルギー起源CO2排出削減の約束水準が大前提の数量制約として君臨してきたと言える。当該約束水準の下では、エネルギー政策の選択肢は「負担の大きい省エネ・新エネ」か「リスクのある原子力発電」か「海外排出権購入」かという3択であった。
-
日本政府は第7次エネルギー基本計画の改定作業に着手した。 2050年のCO2ゼロを目指し、2040年のCO2目標や電源構成などを議論するという。 いま日本政府は再エネ最優先を掲げているが、このまま2040年に向けて太陽光
-
森喜朗氏が安倍首相に提案したサマータイム(夏時間)の導入が、本気で検討されているようだ。産経新聞によると、議員立法で東京オリンピック対策として2019年と2020年だけ導入するというが、こんな変則的な夏時間は混乱のもとに
-
全国知事会が「原子力発電所に対する武力攻撃に関する緊急要請」を政府に出した。これはウクライナで起こったように、原発をねらって武力攻撃が行われた場合の対策を要請するものだ。 これは困難である。原子力規制委員会の更田委員長は
-
英国のEU離脱後の原子力の建設で、厳しすぎるEUの基準から外れる可能性、ビジネスの不透明性の両面の問題が出ているという指摘。
動画
アクセスランキング
- 24時間
- 週間
- 月間