安全性の高い小型炉は将来型原子炉として定着できるのか?
はじめに
発電用原子炉の歴史はこれまでは大型化だった。日本で初めて発電した原子炉JPDRの電気出力は1.25万キロワットだったが今や100万キロワットはおろか、大きなものでは170万キロワットに達している。目的は経済性向上だろう。
しかし、福島第一原子力発電所事故で事情が大きく変わっている。事故を防ぐための津波対策、停電対策等安全対策の強化が必要になったからである。
小型炉は炉心が小さいため、停電になっても困らない自然循環で炉心の冷却ができ、安全性が高いというメリットのため相対的に競争力が高くなった。また、静的機器が多くて安全性が高いことも社会のニーズに適っている。
4Sは既設の原子力発電所の概念と全く異なる
小型炉として良く取り上げられる原子炉に4S(Super-Safe, Small and Simple)がある。4Sは電力中央研究所と(株)東芝の共同開発であるが既設炉と全く原理が異る特徴を持っている。名前にシンプル(Simple)が入っている通り構造は図1に示す通り大変簡素である[注1]。

しかも小さい。炉心の直径は出力5万キロワットタイプの場合直径が約1メートル弱で、高さは約4メートルである。さらにこの小型炉は表1に示す通り安全性を高めるため既設炉とは全く異なる3つの特徴を持っている。あのビル・ゲイツが日本に来て試験装置を見たのはこのためである[注2]。
- 燃料交換不要:運転期間中に核燃料の交換が不要である。運転期間40年の場合、40年分の燃料があらかじめ原子炉に入っているから燃料交換が要らない。例えば4Sを途上国に輸出する場合には、原子炉にあらかじめ核燃料を入れたまま輸送して据え付け、40年の運転後に原子炉をそのまま持ち帰れば現地で原子炉を開ける必要がない。政治情勢が不安定な地域に輸出する場合に便利な設計である。
- 制御棒がない:原子炉に制御棒がない。出力制御は原子炉の外の中性子照射に強いクロム鋼製反射体を上げ下げして行う[注3]。非常時にはこの反射体を重力落下させて原子炉を停止させる。反射体の周囲には燃料集合体が無いから隙間を確保する心配なく間違いなく落下する。これが「超安全」の理由である。しかも反射体には中性子照射に強い高クロム鋼が使われているから交換が要らない。
- 自然対流で冷温停止可能:全停電になっても炉心は自然対流で冷温停止できる。だから全停電を防止するために2重、3重の対策をする必要性が全くない。どの地域に設置するにしても自然対流で冷温出来るというのは将来型原子炉の要件“避難不要な原子炉”の特徴を備えているとも言える。
4Sは高速炉である。燃料にはプルトニウムではなく米国アルゴンヌ研究所で開発された20%濃縮ウランとジルコニウムの二元合金製の金属燃料が使われる。冷却材にはナトリウムを使っておりその循環にはもんじゅで開発された電磁ポンプが使われる。

なぜ今、小型炉が見直されたのか?
非常時に動的冷却装置が必要な原子炉は津波に襲われて全停電になると、崩壊熱が出続けるので事故になる懸念がある。そのため2重、3重に全停電防止対策を取り入れ、さらに冷却が出来なかった場合に備えてフィルターベントの設置まで義務付けられることになった。
これに対し小型炉は殆どの場合、炉心が小さいため全停電になっても空気の自然対流で炉心を冷却出来るという高い安全性がある。
だから全停電を防止する安全対策が不要である。新規制基準で定められた2重、3重の全停電防止対策が不要だし万一に備えたフィルターベントも要らない。
これまで大型炉に対するハンディキャップだったスケール・デメリットが逆に大きなメリットになった。これが将来炉として小型炉が脚光を浴びている理由である。
4S以外の小型炉とその特徴
小型炉には様々なものがある。以下にその代表的なものを示す。
*TWR(進行波炉、Traveling Wave Reactor;テラ・パワー社が開発)

・ビルゲイツが投資したことで注目された[注5]。
・4Sと同様、燃料交換が不要である。
*IMR(Integral Primary System Reactors:三菱重工業が開発[注6])

・一次系一体型炉:循環ポンプ、蒸気発生器等の一次冷却系を原子炉容器内に設置し大破断事故の可能性を排除。
・自然循環方式の一体型を採用。全停電でも安全に停止可能。
*DMS(Double Modular Simplified Reactor;日立とGEが共同開発[注7])

・電気出力300MWe程度のSMRを2030年代に商用化。
・25 ヶ月という短工期で建設可能。
*浮揚式原子炉(KLT-40S;ロシアが開発)
・海上に浮揚させて稼働可能。
*一体型PWR(CAREM-25;アルゼンチンが開発)
・電気出力2.7万キロワットの原型炉で、将来は15万~30万キロワットの小型モジュラー炉を目指している。
小型炉が将来型原子炉として定着するカギは運転員数の削減
自然対流による冷却で小型炉は建設費のハンディキャップは大きく改善できるが、毎年燃料交換する既設炉の法規制のままでは運転員が増えてしまう。
小型炉は燃料交換の頻度が大幅に減少するから運転員も少なくすることが可能である。静的機器の割合が増えて機器故障数が減る実績が確認できれば、当然メンテナンス要員も減少する。
いずれにしても早期に小型炉の原子炉を作り、運転データを蓄積する必要がある。
[注1] 服部禎男,元電力中央研究所理事 工学博士,GEPR「超小型原子炉への期待-事故可能性が極小の原子力利用法の提案」,2018.12.12
[注2] テラパワー – Wikipedia
[注3] 東芝,飯田式彦,原子力産業新聞「小型原子炉4S炉のニーズと開発状況」,2009.7.23
[注4] 大田裕之,福家賢,「東芝レビュー」Vol.65,No.12(2010),p.50-53
[注5] 放射線ホライズン「ビルゲイツが東芝と協力して進めるTWRに中国が資金援助」,2016.3.1
[注6] IAEA「Status Report 95-Integrated Modular Water Reactor (IMR)」,2011.7.21
[注7] 経済産業省「平成26年度原子力の利用状況等に関する調査報告書」,原電,JANUS,p-5-84
関連記事
-
電力自由化は、送電・配電のネットワークを共通インフラとして第三者に開放し、発電・小売部門への新規参入を促す、という形態が一般的な進め方だ。電気の発電・小売事業を行うには、送配電ネットワークの利用が不可欠であるので、規制者は、送配電ネットワークを保有する事業者に「全ての事業者に同条件で送配電ネットワーク利用を可能とすること」を義務付けるとともに、これが貫徹するよう規制を運用することとなる。これがいわゆる発送電分離である。一口に発送電分離と言ってもいくつかの形態があるが、経産省の電力システム改革専門委員会では、以下の4類型に大別している。
-
米国トランプ政権が環境保護庁(EPA)からCO2規制権限を剥奪する提案をした(提案本文(英語)、(機械翻訳))。 2009年に決定されて、自動車等のCO2排出規制の根拠となっていたCO2の「危険性認定(endangerm
-
アゼルバイジャンで開催されている国連気候会議(COP29)に小池東京都知事が出張して伊豆諸島に浮体式の(つまり海に浮かべてロープで係留する)洋上風力発電所100万キロワットの建設を目指す、と講演したことが報道された。 伊
-
2015年11月24日放送。出演は鈴木達治郎氏(長崎大学核兵器廃絶研究センター長・教授)、池田信夫氏(アゴラ研究所所長)、司会は石井孝明氏(ジャーナリスト)。核兵器廃絶を求める科学者らの「パグウォッシュ会議」が今年11月の5日間、長崎で開かれました。鈴木氏は、その事務局長として会議を成功に導きました。また14年まで国の原子力政策を決める原子力委員会の委員長代理でした。日本の原子力の平和利用を考えます。
-
イーロン・マスク氏曰く、「ヨーロッパは、ウクライナ戦争が永遠に続くことを願っている」。 確かに、トランプ米大統領がウクライナ戦争の終結に尽力していることを、ヨーロッパは歓迎していない。それどころか、デンマークのフレデリク
-
1. 三菱商事洋上風力発電事業「ゼロからの見直し」 2021年一般海域での洋上風力発電公募第1弾、いわゆるラウンド1において、3海域(秋田県三種沖、由利本荘沖、千葉県銚子沖)全てにおいて、他の入札者に圧倒的大差をつけて勝
-
みなさんこんにちは。消費生活アドバイザーの丸山晴美です。これから、省エネやエコライフなど生活に密着した役立つお話をご紹介できればと思っております。どうぞよろしくお願いいたします。
-
前稿で紹介した、石橋克彦著「リニア新幹線と南海トラフ巨大地震」(集英社新書1071G)と言う本は、多くの国民にとって有用と思える内容を含んでいるので、さらに詳しく紹介したい。 筆者は、この本から、単にリニア新幹線の危険性
動画
アクセスランキング
- 24時間
- 週間
- 月間















