2030年の電力化率はどうあるべきか

2015年04月20日 11:00
アバター画像
キヤノングローバル戦略研究所研究主幹

(IEEI版)

要約

2030年の電源構成(エネルギーミックス)について現時点で予断はできない。だが、どのようなミックスになるにせよ、ヒートポンプ・EVを初めとした電気利用技術は温暖化対策の一つとして有力である。さらに、2030年以降といった、より長い時間軸で考えると、電力の低炭素化は後戻りしないであろうから、電力化率(=最終エネルギーに占める電力の割合)の上昇はますます重要な手段となる。

震災以来、緊急的な節電が実施されてきたが、電力需給の不安定は2030年には解消しているはずであり、また電力供給インフラはより強靱になっているはずである。短期的な情況と長期的な戦略は区別しなければならない。経済・技術の発展により、電化率は趨勢として上昇してきたし、今後もこの趨勢は続く。更に温暖化対策の観点を加えるならば、電力化率はますます上昇すると想定することが適切である。

1・はじめに:電気利用技術のCO2削減効果

日本の今後の電源構成(エネルギーミックス)をどうするかということについては、いま政府審議会で議論が進んでいるところであり、その結論の予断はできない。

過去においては、原子力・再エネの合計の比率は2000年に45%に達したのが最高であり、震災前の2010年には39%であった(図2)。このぐらいの比率の下で、ヒートポンプやEV(電気自動車)を初めとした電気利用技術は、CO2を削減する技術の一つとして重要であった。今後定められていく新しい電源ミックスがどのようなものになるにしても、電気利用技術のこのような位置づけが大きく変わることはないであろう。

電気の利用が温暖化対策として優れる理由は2つある。第1は、供給側において、原子力・再エネ・高効率火力発電等の低炭素技術があることである。過去、CO2の少ない電源を増やし、また高効率化を進めることで、発電部門のCO2原単位は大幅に改善してきた(図1)。第2は、需要側において、ヒートポンプやモーターなどの効率の高い技術があることである。(注・電気利用技術の温暖化対策における位置づけについて専門的な観点から解説したものとしては「電気のチカラ」(電力中央研究所編著、エネルギーフォーラム社刊))

(図1)発電に伴うCO2排出量の推移(電気事業連合会ホームページ)
(図2)電源別発電電力量の実績(電気事業連合会ホームページ)

2・歴史的趨勢としての電力化:過去と現在

図3で、過去の電力化率(=最終エネルギー需要に占める電力の割合)を見てみよう。国によってエネルギー需要の構成が異なるのでばらつきはあるものの、以下の傾向ははっきりしている。すなわち、電力化率は、あらゆる国で、一貫して上昇してきた。そして、電力化率は所得水準にも依存するが、それ以上に、同じ所得水準であっても、時間とともに電化率が大きく上昇してきた。

所得水準が上がるにつれて電化が進んできたのは、電気が、便利・安全・クリーンだからである。所得水準が同じであっても時間と共に電化率が上昇してきたのは、技術進歩によって、次々に新しい機器が利用可能になり、かつそのコストが低下してきたからである。

(注・歴史的趨勢としての電力化について専門的に論じたものとして、やや古いが、論文「地球環境と電力化」。また多くの家電製品が開発され、普及してきたことについては、例えば「家電普及率の推移図」

今後も、この傾向は変わらないだろう。電力化率は、一貫して、時間と共に上昇する。それは、経済成長が早ければ勿論加速されるが、仮に経済成長が遅くても、技術進歩に伴って電化率は上昇していくだろう。

(図3)電力化率の国際比較。電力化率は、所得水準に依存して上昇するが、同じ所得水準であっても、時間の経過とともに上昇してきた。データ出所:EDMC2014エネルギー統計要覧 p246, p252。点線は対数回帰曲線。筆者作成。

3・温暖化対策としての電力化:2030年を越えて

CO2を大規模に削減しようとすると、電力の低炭素化と、電化率の向上がその主要な手段となる。このことは、IPCC第5次評価報告書でも取り上げられている。図4では、世界全体の、2050年における、最終エネルギーに占める電力の割合(電力化率)の計算結果が示されている。CO2濃度を低く抑えるシナリオ(図4の左側)ほど、電力化率が高くなる傾向にあることが、国際機関、エネルギー研究者、環境NGOなど、多くの異なる研究グループによって、共通の見解として示されている。

(注・なお、IPCCというと66%の確率で温暖化を2度に抑制するというシナリオが最もよく報道されているが、その内容を見るとバイオエネルギーとCCSを大量導入して排出をマイナスにするというかなり極端な(というより荒唐無稽な)シナリオなので、このシナリオ自体は、筆者はとても受け入れられない。IPCCとしても実現は困難である(challenge is huge)と認識している。2度シナリオの問題点はこちら(記事「現実感失う温暖化「2度」抑制・IPCC報告書はこう読む」)。だが、より一般的な結論として、温暖化対策は電力化と相性が良いという点については、2度以外の多くのシナリオでも確認できる。)

電力化は、歴史的趨勢としても起きた現象であり、今後も続くであろう。温暖化対策をするということは、これを一層加速することである、と理解できる。

温暖化問題は、2030年に終わるものではない。2050年、あるいはそれ以降をも見据えて長期的に取り組むべき問題である。2030年のエネルギー需給見通しには、そのような、長期的な観点が必要である。より高い電力化率へ向かうための中間点として、2030年に向けて電力化率は下がるのではなく、上がる、とすることが適切であろう。

では電化率の向上を実現するためにはどうすればよいか。それが消費者に選択されるためには、2030年の電力供給は、単にCO2原単位が低いというだけでは落第である。安定して、安価なものでなければならない。つまり、環境という1Eだけを突出させるのではなく、3Eのバランスをとったミックスを実現することが、長期的な温暖化対策として、最も優れたものとなる。

図4 電力化率とCO2濃度の関係。世界全体の2050年の電力化率(縦軸)が示されている。CO2濃度の低いシナリオ(図の左側)ほど、電化率が高くなる傾向が、多くの研究者によって共通して示されている。出典:(IPCC報告における引用)

(2015年4月20日掲載)

This page as PDF
アバター画像
キヤノングローバル戦略研究所研究主幹

関連記事

  • 奈良林教授が、専門家向けにまとめた報告。
  • 2014年3月のロシアによるクリミア編入はEUに大きな衝撃を与えた。これはロシア・ウクライナ間の緊張関係を高め、更にEUとロシアの関係悪化を招いた。ウクライナ問題はそれ自体、欧州のみならず世界の政治、外交、経済に様々な影響を与えているが、EUのエネルギー政策担当者の頭にすぐ浮かんだのが2006年、2009年のロシア・ウクライナガス紛争であった。
  • 筆者は基本的な認識として、電力のビジネスモデルの歴史的大転換が必要と訴えている。そのために「リアルでポジティブな原発のたたみ方」を提唱している。
  • 日本の電力系統の特徴にまず挙げられるのは、欧州の国際連系が「メッシュ状」であるのに対し、北海道から 九州の電力系統があたかも団子をくし刺ししたように見える「くし形」に連系していることである。
  • 前回に続いて経済産業省・総合エネルギー調査会総合部会の「電力システム改革専門委員会」の報告書(注1)を委員長としてとりまとめた伊藤元重・東京大学大学院経済学研究科教授が本年4月に公開した論考「日本の電力システムを創造的に破壊すべき3つの理由」(注2)について、私見を述べていきたい。
  • サウジアラビアのエネルギー・産業・鉱物資源省(石油担当)大臣で、国営石油会社のサウジアラムコ会長を兼ねるカリード・A・アル・ファーレフ氏が9月1日の東京のセミナー「日本サウジアラビア〝ビジョン2030〟ビジネスフォーラム」で行った発言の要旨が公表された。
  • 東日本大震災から5年余が経過した。その時の東京電力福島第一原子力発電所の事故によって、福島県および周辺都県の環境が汚染された。その後の除染によって福島県の環境放射能はずいぶんと減衰し、福島県の大半の地域で追加被ばく線量が年間1ミリシーベルト(mSv)を下回るようになった。
  • 【要旨】 放射線の健康影響に関して、学術的かつ定量的に分析評価を行なっている学術論文をレビューした。人体への影響評価に直結する「疫学アプローチ」で世界的にも最も権威のあるデータ源は、広島・長崎の原爆被爆者調査(LSS)である。その実施主体の放射線影響研究所(RERF:広島市)は全線量域で発がんリスクが線量に比例する「直線しきい値なし(LNT)仮説」に基づくモデルをあてはめ、その解析結果が国際放射線防護委員会(ICRP)の勧告に反映されている。しかしLNT仮説は低い線量域(おおむね100mSv以下)では生物学的に根拠がない(リスクはもっと小さい)とする「生物アプローチ」に基づく研究が近年広くなされている。

アクセスランキング

  • 24時間
  • 週間
  • 月間

過去の記事

ページの先頭に戻る↑