リスクはどこまで低くなれば安心できるか
はじめに
リスクはどこまで低くなれば安心できるのだろうか。泊原子力発電所は福一事故後7年も経ったのにまだ止まったままだ。再稼働できない理由のひとつは基準地震動の大きさが決っていないことだという。今行われている審査ではホモ・サピエンス時代の地震の話が焦点だという。12~13万年前以降に大きな地震が起きていないことを確認するためだ。しかし、この10数万年以上前の地震についての北海道電力と原子力規制委員会の見解が一致しないそうだ。この議論をいつまで続けるのだろうか。ブラックアウトの時、腎臓透析が出来なくて困った人やその家族の人達がこのことを聞いたらどう思うだろうか。9月の停電の検証委員会は10月の中間報告案で暗に泊原発の早期再稼働を促しているように思う。当然新規制基準を守らねばならぬが、早く現実的な結論を出し、泊原発を市民生活の役に立ててほしい。
地震のリスクはどれほど大きいか
政府の地震本部は主要活断層のリスクを4段階に分けている。今後30年以内に地震が起きる確率でのランク分けである。30年以内の地震発生確率でランク分けしているのは大変現実的である。
2010年の資料の図1では注意すべき地震として確率の高い地震4つと確率がやや高い地震6つの併せて10個を挙げている。右側に同じ程度の確率の通常リスクが示されている。大雨の被災とか台風の被災は身近だし、交通事故死は確率がもっと低い。逆に言えば「確率が高い」「確率がやや高い」地震10個が起きる確率は交通事故で死ぬより高いという事になる。こうやって種類の異なるものを比べられるのはリスク概念の利点の一つである。
放射線の被ばくリスクと通常リスク
福一事故の時、小学校の校庭での放射線被ばく線量が問題なったことがある。多くの母親は線量が年間約20mSvだと聞いて子供たちを校庭に出さないよう求め、小学校はその要求に従った。図2は癌研の資料からの抜粋である。相対リスク1.1~1.29の欄を見るとこのリスクと同等なのは放射線被ばくが200~500mSvである。運動不足のリスクはこの被ばく線量と同等なのである。20mSvの放射線被ばくを回避するためにその10倍の200mSvの放射線被ばくのリスクを選択したことになる。その結果、福島の小学生の運動能力はほぼ全国最下位に低下してしまった。もちろん、このデータを見て校庭の運動を再開したことにしたのは賢明な判断である。日頃、このような多分野のリスク比較を知っておくことは大事なことである。
巨大火山の噴火リスクはどれほどか
伊方3号機の仮処分裁判では9万年前の阿蘇山のカルデラ噴火が論じられた。リスクが低くても危険性が高いために取り上げられたものであろう。発生確率の大きさと危険性の大きさの関係について論じた論文は少ないが、2014年に神戸大学の巽教授の「巨大カルデラ噴火のメカニズム」と題した論文がある。これによると日本列島で今後100年間に巨大カルデラ噴火が起こる確率は約1%であるとしている。カルデラ噴火のリスクがこれまで考えられていた以上に大きいとしているが、この論文では死亡者数に発生確率を乗じた数値での災害の危険度比較を提案している。それが図3である。
この図では危険性(その事象が起きた時の死者数)と年間発生確率の積が同じリスクは同等だとしている。巨大カルデラ噴火と交通事故死は共にその積が100と1000の間にあるから同等だという事になる。福一事故では死者が出なかったがこの図では事故死者数が必要なので、異論もあると思うが、福島県の震災関連死2227人(2018年3月末時点の福島県の震災関連死数。)を原発事故による死者数だと仮定した。それでも図3の緑の丸(筆者が追記)で示した通り、原子力発電所事故のリスクは発生確率と死亡者数の積がほぼ0.01の線上にあるので交通事故死より1万分の1以下ということになる。

関連記事
-
はじめに 原発は高くなったと誤解している人が多い。これまで数千億円と言われていた原発の建設費が3兆円に跳ね上がったからである。 日本では福島事故の再防止対策が膨らみ、新規制基準には特重施設といわれるテロ対策まで設置するよ
-
アリソン教授は、GEPRに「放射線の事実に向き合う?本当にそれほど危険なのか」というコラムを寄稿した。同氏は冷戦構造の中で、原子力エネルギーへの過度な恐怖心が世界に広がったことを指摘した上で、理性的に事実に向き合う必要を強調した。(日本語要旨は近日公開)
-
国内の科学者を代表し、政府の科学顧問の立場の組織である日本学術会議が、「高レベル放射性廃棄物の処分に関する政策について--暫定保管を中心に」という核物質の処理をめぐる提言案をまとめた。最終報告は3月をめどに取りまとめられる。分析が表面的であり、論理的整合性も乏しい、問題の多い提言だ。
-
原子力発電は「トイレの無いマンション」と言われている。核分裂で発生する放射性廃棄物の処分場所が決まっていないためだ。時間が経てば発生する放射線量が減衰するが、土壌と同じ放射線量まで減衰するには10万年という年月がかかる。
-
日米の原子力には運転データ活用の面で大きな違いがある。今から38年前の1979年のスリーマイル島2号機事故後に原子力発電運転協会(INPO)が設立され、原子力発電所の運転データが共有されることになった。この結果、データを
-
28年前、旧ソ連邦のウクライナで4号機が放射能を火山のように噴出させて以来、チェルノブイリの名前は原子力の悪夢のような面の同義語となってきた。そのチェルノブイリでは現在、巨大な国際プロジェクトが進行している。高い放射能を帯びた原子炉の残骸を、劣化したコンクリート製の「石棺」ごと、今後100年間以上封じ込める巨大な鋼鉄製シェルターの建設作業だ。
-
7月1日掲載。東芝が米国でのABWR(改良型沸騰水型原子炉)の設計認証を、取り下げた。新規受注が認められないためのようだ。先進国では、原子力ビジネスは規制などによって難しくなっている。
-
リスク情報伝達の視点から注目した事例がある。それ は「イタリアにおいて複数の地震学者が、地震に対する警告の失敗により有罪判決を受けた」との報道(2012年 10月)である。
動画
アクセスランキング
- 24時間
- 週間
- 月間